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ABSTRACT

An elastic large displacement thick-shell mixed finite

element is modified to allow for the calculation of viscoelastic

stresses. Internal strain variables are introduced at the

element's stress nodes and are employed to construct a viscous

material model. First order ordinary differential equations

relate the internal strain variables to the corresponding elastic

strains at the stress nodes. The viscous stresses are computed

from the internal strain variables using viscous moduli which are

a fraction of the elastic moduli. The energy dissipated by the

action of the viscous stresses is included in the mixed

variational functional. The nonlinear quasi-static viscous

equilibrium equations are then obtained. Previously developed

Taylor expansions of the nonlinear elastic equilibrium equations

are modified to include the viscous terms. A predictor-corrector

time marching solution algorithm is employed to solve the

algebraic-differential equations. The viscous shell element is

employed to computationally simulate a stair-step loading and

unloading of an aircraft tire in contact with a frictionless

surface.

# Army Research Laboratory, Vehicle Technology Directorate, MS240.

t Boeing Commercial Airplane Group, Seattle, WA.
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INTRODUCTION

Aircraft tires are composite structures manufactured with

viscoelastic materials such as carbon black filled rubber and

nylon cords. When loaded, tires experience large deflections and

1
moderately large strains. Finite element models of tires

typically employ either two-dimensional thick shell or three-

dimensional solid elements. 2,3 Elastic finite element shell

models for tires have been used to predict the shape of tire

4-9
footprints as a function of loading. Elastic models do not

include the viscoelastic nature of the tire which can have a

significant effect on load-displacement curves. This study is the

computational part of an effort in which the quasi-static

viscoelastic loading and unloading of an aircraft tire was

measured and computationally simulated. The experimental effort

I0
and the load measurements have been reported elsewhere.

In several previous studies viscoelastic constitutive models

have been utilized to determine the dynamic deformations of tires.

The following references are provided as a starting point for

readers interested in obtaining details about other viscoelastic

finite element models for tires. Padovan, et al. 11,12,13

performed an extensive study in which a finite element algorithm

was developed for rolling tires. Padovan's model included the

effects of large deformations and contact. It also employed

fractional derivatives to model the viscoelastic effects. The

2,3
tire models made by Oden et al. also included the effects of

large deformations and contact. However, Oden's model employed

the history integral formulation for the viscoelastic effects.

In this report, internal strain variables are employed to

convert an elastic mixed shell element 4 into a viscous mixed shell

element. The model is developed as follows. Internal strain

variables are introduced at the stress nodes of the mixed element.

First order differential equations relate the internal variables



to the physical strain variables. The equations represent a

Maxwell solid. 14'15 Viscous stresses are determined from the

internal strains by using material parameters referred to as

viscous moduli. An expression for the energy dissipated during

deformation is computed from the viscous stresses. This is

accomplished by employing the finite element interpolations that

are used to compute the elastic stresses from the elastic strains
in the elastic version of the shell element. The dissipation

energy functional is added to the mixed variational statement for

the elastic problem. Nonlinear algebraic equilibrium equations

are determined and are numerically solved, simultaneously, with

the internal variable differential equations. The numerical

solution procedure employs the Newton-Raphson method for the

nonlinear algebraic equations, and the trapezoidal method for the

differential equations in a predictor-corrector combination. The

tangent matrix required in the Newton-Raphson scheme is a modified

version of the previously determined 4'7-9 tangent matrix for the

nonlinear elastic problem.
At the end of the paper, the viscous shell element is

employed in a computational simulation of a stair-step loading and
unloading of an aircraft tire. The elastic material constants

7
used are from a previous effort. The viscous material constants

required are estimated by making a least-squares fit of load-
relaxation data, as predicted by a one-dimensional version of the

viscous model, to measured load-relaxation data. In the

simulation, the stair-step tire rim displacement, as measured in
I0

the experimental effort, is enforced. The computed and measured

stair-step hysteresis curves are presented together for reference.

VISCOELASTIC MIXED SHELL ELEMENT

An elastic shell element capable of modeling geometrically

nonlinear deformations of thick laminated composites was developed



4-9
by Noor, et al. Figure i. shows the physical variables

employed to describe the energy in the deformed shell. The

elastic finite element has nine displacement nodes with five
variables at each node, and four stress nodes with eight variables

at each node, see Figure 2. The constitutive model 7-9 in the

shell generalized coordinates is abbreviated as

_=Ce (i)

where o=[Ns,Ne,Nso,Ms,Mo,MsO,_s,(20)T" -- ------ ----" is a vector of stress

variables, e = (Es,EO,2EsO,_s,_O,2_sO,2Es3,2Eo3)ris a vector of the

Sanders-Budiansky 19'20 nonlinear strains, and C is a matrix of

elastic stiffness constants. The elastic element employs the

Hellinger-Resiner mixed variational principle which is constructed

as follows. The complementary form of the energy is integrated

over the volume of the shell and the total work done by external

forces is subtracted. This results in _HR which is expressed as

follows.

sl )_HR = cra e,_crTF (3"dr2- W (2)

where _ is the volume of the shell, F is a flexibility matrix,

and W is the work done by external forces.

Next, the energy functional, _HR, is discretized by the

4
finite element method. At the element level, the displacements

and stress resultants are approximated by employing interpolation

functions with the nodal values shown in Figure 2. The Sanders-

Budiansky nonlinear strains are computed and substituted into

Equation (2) above. After the volume integration is performed for

an element, the Hellinger-Resiner variational expression is given

in short-hand notation as follows.

4



elt = U c_HR(X,h) V- -W (3)

w ereS:e"°
_elt

1 aT F 1 _T_ _ W = _T _ = _T _ X and e areU c = _ _ od_ _ _ ,
_elt

vectors containing the element's nodal displacements and strains,

is an element level vector, S_x and M,_ are operators that

produce the linear and nonlinear contributions to e from the nodal

displacements, F is an element level flexibility matrix, and

represents the consistent applied load vector.

Internal strain variables are employed herein to modify the

above formulation making it applicable to a Maxwell type

viscoelastic material. 14'15 Introduce, in vector form, internal

strain fields, ejv, and matrices of viscous stiffness constants,

Cv, within the element The viscous stress vector at a point in

the element is computed as follows.

Gv = E Cvejv (4)

j=l

The total value of the stress vector, elastic plus viscous, at a

point is G t = G+Gv. Next, following the computation of the

elastic potential, V, in Equation (3), the energy dissipated by

the viscous stresses, Q, throughout the element is computed as

follows.

o- fOv e"-
_"_elt

(5)



where h v is an element level vector. The mixed variational

ql'elt,v
functional for the viscous element, ,VHR , is given by

_elt,v [,, _"_ U c
Ha ix, n] = V + Q- - W (6)

The model is completed by relating the rate of change of the

internal strain variables to the physical strain variables. Here

we employ a simple form of the Maxwell solid theory by requiring

14,15,18
the following differential equations to be satisfied.

de jv e jv d6

dt Z jv dt
j=l,2,,,,,n (7)

Equations (4) and (7) determine the viscous stresses for a time

dependent deformation of the element, x(t). Note, an advantage of

this algorithm is that a variety of viscoelastic models can be

employed by simply changing Equation (7).

At each instant of time, the element equilibrium equations

_elt,v
are given by the first variation of ,VHR , Equation (6). The

equilibrium equations are

and

x,h = Sex +_Mnexx -Fh= 0

- +,,i.,.)(f,+hv)-O-o

(8)

(9)

where Se and i,ex are the derivatives of the operators S_ and

M,g= with respect to the element displacement variables, X.

Equations (8) and (9) are assembled by standard methods to obtain

6



the global equilibrium equations. The global equations are then

solved simultaneously with Equation 7 (for all elements.)

The Taylor expansion of Equations (8) and (9) produces the

element's tangent matrix. The resulting element level Newton-

Raphson equations for the increments of the variables _ and

are given below.

(i0)

where _/_ng is the second derivative of the operator _/_,g_ with

respect to the nodal displacements. Equations (10) are assembled

for all elements and solved to provide estimates of the variables

increments across a time step. The new elastic strains at the end

of the time step are computed at all stress nodes. The internal

strain variables are then estimated at the end of the time step by

employing the trapezoidal method to Equation (7). Next, global

equilibrium is checked. If equilibrium is not satisfied the

process is repeated. When equilibrium is satisfied the required

output is computed and the time is advanced.

TIRE STAIR-STEP LOADING SIMULATION

The aircraft tire simulated below is a 32 x 8.8, type VII,

bias-ply Shuttle nose-gear tire which has a 20-ply rated carcass

7-10
and a maximum speed rating of 217 knots. The tread pattern

consists of three circumferential grooves and the rated inflation

i0
pressure is 320 psi. During the stair-step test, the tire was

inflated to 300 psi. The rated operating load for the tire is

15,000 pounds.

Elastic Material Model



The details of the tire's elastic material model are

7
described by Tanner. The tire is a cord-rubber composite and was

treated as a laminated material. It was divided into seven

regions in the direction of the meridian (from the center of the

tread region to the rim.) Tire thickness, properties of the

plies, etc. were measured and tabulated. Elastic constants were

computed by the law of mixtures to obtain linear orthotropic

stress-strain constitutive models for each layer. These

properties were transformed to the shell coordinate system and

integrated through the thickness of the shell elements.

Viscoelastic Material Model

One dimensional tire loading data I0 is employed below to

obtain an approximation to the viscous material properties.

Obtaining and analyzing time dependent multi-axial test data would

result in a more accurate viscous material model than the model

described in this study. The task of performing multi-axial

stress-strain tests on coupons cut from the tire was beyond the

scope of this effort. Below we describe how the measured one-

dimensional load-relaxation data is least-squares fit to a

simplified form of Equation (4).

When a material is rapidly deformed from a relaxed unstrained

state into a deformed state in which the strains are held

constant, we have a state of stress relaxation in the material.

In this case, Equations (7) can be integrated. The solutions are

substituted into Equation (4) and the following stress-relaxation

equation for Gt(t ) is obtained.

[ N 1_r,(t)= C+C_/_,C_ne _" e(,=O +)
.=1

(ii)

where e_tl= 0 +)\ is the initial value of the rapidly obtained strain

state achieved.



Since the test data is one dimensional we can not determine

the matrix Cv. Here, C v is assumed to be equal to the matrix C

throughout the tire. With this assumption, Equation (ii) becomes

O',(t)= 1+ Cet=O + (12)

Note, modeling the tire with shell elements neglects three-

dimensional effects (such as tread compression, bead-rim

interaction, etc.) When this shell element tire model is suddenly

pressed against a frictionless platform, Equation (12) implies

that the total measured load on the platform will be given by

/(t)= I+ _.._a.eT" f(t=0 +)
n=1

(13)

where --'\f[t=0+) is the elastic part of the tire's load on the

platform. The Prony series coefficients in Equation (13) are

determined below by performing a constrained least-squares fit to

measured tire load-relaxation data.

The classical procedure of inspecting the log(load) versus

log(time) data curve for a load-relaxation test is used to select

a range of time constants, _n ,=I" The range selected must

include the full spectrum of decay rates needed to model the

relaxation curve. The error, _(ti), at time ti is

A A[N l1_(ti)=f(ti)-f(ti) =f(ti)- l+_ne " ft=0 +
n=l

(14)



where f(ti) is the measured platform load at time ti. The square of

the error indicated by Equation (14) is added for all the data and

is minimized with the constraint that the coefficients, a,, be

positive. That is, so that _, _ 0 ,=I" The algorithm employed to

solve this constrained minimization problem is due to Rusin. 21 It

was also used by Johnson and Quigley 22 as part of an algorithm

which solves nonlinear frictionless contact problems.

The relaxation data shown in Figure 3 is from a 900 sec load-

relaxation test• In the test, a large displacement of the tire's

rim was rapidly enforced and then held approximately constant for

900 sec The enforced displacement was selected I0• so that the

total tire loading would be near 20,000 ibs. Inspection of the

tire rim to platform displacement data indicated that the platform

was moving slightly during the test. The elastic component of the

load-relaxation data was adjusted, as described below, to correct

for the platform drift.

The adjustment was accomplished as follows. Inspection of

the data indicated that only 7% of the total loading is

viscoelastic• This implied that 93% of the correction for the

platform drift is due to the change in the elastic component of

the load. A cubic polynomial was least-squares fit to the stair-

step hysteretic loading and unloading data. The resulting cubic

curve is shown in Figure 4. It passes through the thin quasi-

static hysteresis loop, and is an approximation to the elastic

load-displacement curve. The platform location at the start of

the load-relaxation, 2.194 in, is a reference position from which

the drift can be measured. The total relaxing load was adjusted

by the computed difference in the elastic component of the load

due to the platform drifting. The adjusted load-relaxation curve

is shown in Figure 5. Note that the adjusted curve has more noise

than the original curve. The noise is due to the fact that the

platform displacement data does not contain as many significant

digits as the platform load data• However, the least-squares fit

I0



to the noisy adjusted data presented in Figure 5 indicates that

the resulting adjustment is significant.

T 3With { ,},=I = {10, I00, 1000}, the constrained least-squares

Prony series for the adjusted load-relaxation data is

f(t) =
I -_t_t -t -t

1+0.01836 e 1° +0.01630 e 1°° +0.03650 e 1°°° * 18523 (15)

More accurate least-squares curve fits can be obtained with a

larger number of time constants (spaced more closely, etc.)

However, the use of a large number of time constants slows down

the finite element algorithm. All of the calculations below were

performed employing the Prony series represented by Equation (15).

Sel_ction of Time Step

Prior to running the viscous version of the finite element

code a one-dimensional numerical simulation of the stair-step test

was made. The one-dimensional equations are solved quickly and

produce insight on the size of the time steps required in the

finite element simulation. A schematic of the one-dimensional

material model is shown in Figure 6. The quasi-static equilibrium

equations for the model are

3

f(t)= fe(x)+kv___ajxj
n=l

dx j X j dx
_+--= for j=1,2,3

dt r j dt

(16)

( )'where aj,Tj j=l are the Prony series coefficients,

polynomial representation of the nonlinear

displacement curve, k v =
(o: 1 + a 2 + a 3 ) * 18523 lbs

2.194 in

fe(X) is the

elastic load

is the total

11



viscous stiffness obtained from the step strain relaxation data,

{x}3and J ]=I are the internal variables used to compute the viscous

force.

A plot of the measured stair-step displacement data is shown

in Figure 7. A piecewise linear representation of this curve was

obtained by using straight lines between the corner points of the

stair-steps. As noted above, close inspection of the data reveals

that the platform was drifting during the relaxation intervals.

The simulation of the stair-step loading that results from

integrating Equations (16) is shown in Figure 8. Load-

displacement plots at the peak load, computed with time steps of

0.2 sec and 1.0 sec, are shown in Figure 9. The plots for each of

these two time steps agree well. Smaller time steps did not

provide any additional information. The values of the time

{ }constants, T, n=l' in the differential equations indicate that a

-t

time step of 2.0 sec or larger (to integrate e I0 with the

trapezoidal method) can be used. However, when a time step of 2.0

sec or larger was used, the errors introduced by missing the

details of the stair-step ramping action were too large to accept.

A time step of 1.0 sec was selected to for the finite element

computations.

Finite Element Simulation

The tire's finite element mesh and a sketch of the loading

platform are shown in Figure 10. The mesh is similar to the

7
"Model i" mesh employed by Tanner. The elastic model has 540

elements and 28,565 degrees of freedom (not including the Lagrange

multipliers used for points that come into contact.) An

additional 103,680 internal variables were added to program the

solution algorithm for the material model described above. The

platform surface is frictionless. Computed elastic and

viscoelastic load-displacement curves, obtained by enforcing the

stair-step tire rim displacement are shown in Figure ii.

12



A comparison of the curves in Figures 8 and ii indicates that
the finite element model is stiffer than the one-dimensional

model. This is because the elastic component of the finite

element model is stiffer than the elastic component of the one-

dimensional model. Since the one-dimensional model closely

represents the measured data, the finite element model employed

here produces a load-displacement curve which is above the

measured data curve. The finite element load-displacement

hysteresis loop and the measured hysteresis loop are shown in

Figure 12. The measured loop encloses more area than the computed

loop. This indicates that the simulation underestimated the

viscous energy lost during the test.

CONCLUDING REMARKS

An algorithm for converting elastic structural elements based

on the mixed Hellinger-Resiner mixed variational principle to

viscoelastic structural elements was presented. The thirteen node

large displacement thick-shell element derived by Noor and

4
Hartley was employed to describe the algorithm. A finite element

tire model based on this shell element, and used by Tanner 7'8'9 to

analyze tire footprints was modified so that the tire material

would represent a Maxwell solid. Load-displacement data from a

stair-step loading test was computationally simulated. The

computed stair-step hysteresis loop indicated less viscous loss

than the measured loop. The new computational algorithm

functioned successfully. This algorithm can be applied to all

structural elements of either displacement or mixed type.

13
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